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RESUMO

SOUZA, L. F. Aprendizado de Maquina aplicado ao estudo das interacgoes
entre microRNA e estresse bidtico em plantas. 2021. Monografia (Trabalho
de Conclusao de Curso II — Engenharia Bioquimica) — Escola de Engenharia de
Lorena, Universidade de Sao Paulo, Lorena, 2021

O desafio de garantir seguranca alimentar para o futuro da populagao mundial é
uma das principais preocupagoes de pesquisadores de biologia de plantas. Devido
as mudangas ambientais e o aumento esperado da populagao global, desenvolver
cultivos com alto rendimento e tolerantes a estresse é uma prioridade para os
proximos anos. MicroRNAs (miRNAs) sao pequenos RNAs nao-codificantes,
endbgenos de 20-22 nucleotideos codificados por genes de microRNA (MIR, genes)
que conseguem regular o nivel transcricional da planta reprimindo a expressao de
seus alvos. Cientistas tém descoberto muitas interagoes entre microRNA e as
respostas das plantas contra estresse bidtico, sugerindo a importancia dos
microRNAs contra o ataque de patdégenos. Conforme novas técnicas de alto
rendimento vem sendo desenvolvidas, Aprendizado de Méquina (AM) tem emergido
como uma ponderosa ferramenta para extrair informacao de complexos dados
biolégicos. Algoritmos de AM podem explorar grandes bancos de dados e estabelecer
relagoes em modelos nao lineares sem muito conhecimento sobre os padroes dos
dados antecipadamente. Essa revisao almeja validar o potencial use de aprendizado
de maquina para analisar microRNAs em plantas sob estresse biético, predizendo
seus alvos e elucidando suas complexas interacoes de funcionalidade. Além disso,
este trabalho deve preencher a lacuna de conhecimento necessario entre os campos
da ciéncia da computacao e da biotecnologia para permitir que os pesquisadores
apliquem o aprendizado de maquina em seus estudos sobre miRNAs e interagoes
planta-patogeno.

Palavras-chaves: Aprendizado de Maquina, microRNA, Estresse biotico, Planta-

patogeno



ABSTRACT

SOUZA, L. F. Machine Learning applied to the study of interactions
between micro-RNA and biotic stress in plants. 2021. Monograph (Course
Conclusion Work II - Biochemical Engineering) — Lorena School of Engineering,
University of Sao Paulo, Lorena, 2021

The challenge of guarantying food security to the future world population is a
significant concern of plant biology researchers. Due to environmental changes and
the expected increase of the global population, developing high-yielding and stress-
tolerant crops are priorities for the following years. Micro-RNAs (miRNAs) are
small non-coding endogenous RNAs of 20-22 nucleotides encoded by microRNA
genes (MIR genes) which can regulate plant transcriptional levels repressing the
expression of their targets. Scientists have described many interactions between
microRNAs and plants' responses to biotic stress suggesting their importance
against pathogens attacks. As new high-throughput genomic techniques have been
developed, Machine Learning (ML) has emerged as a powerful tool to extract
information from complex biological data. ML algorithms can explore large datasets
and establish relations on non-linear models without knowing much about the data
patterns in advance. This review aims to validate the potential use of machine
learning to analyze microRNAs in plants over biotic stress predicting their target
and elucidating their complex interactions functionality. Furthermore, this work
should fill the gap of required knowledge between computer science and
biotechnology fields to enable researchers to apply machine learning to their studies
about miRNAs and plant-pathogen interactions

Keywords: Machine Learning, microRNA, Biotic Stress, Plant-Pathogen
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1 Introduction

Extreme climatic conditions and the increase of the global population have
taken attention from plant biology researchers. According to the United Nations
Population Division, the global population will touch the mark of 8.3 billion by
2030. Assuring that food, fodder, fiber, and fuel demand will be met for the
following years requires the development of high-yielding and stress-tolerant crop
varieties. An emerging concern is the climatic variations in some regions of the
globe, as being sessile, plants have to face and cope with the environment they live
in. This change will lead to shifts in biomes and can affect the sensible relationship
between diseases and crops (CHAUDHARY; GROVER; SHARMA, 2021a; THUDI
et al., 2021).

Genetic engineering is currently being utilized to enhance desired crop
traits. However, since a single trait might be controlled by many genes,
manipulating agronomical traits requires genetic modulators that act precisely and
target in a specific manner (CHAUDHARY; GROVER; SHARMA, 2021a).

MicroRNA manipulation is emerging as a potential target for genetic
engineering to improve the agronomic properties of crops. Regulating miRNAs
expression level is an efficient strategy to improve plant responses to environmental
stresses (biotic and abiotic), plant growth, and development levels (DJAMI-
TCHATCHOU et al., 2017).

Machine Learning (ML) has arisen as a powerful tool to analyze biological
data in the last years. ML can investigate many data instances and reveal complex
interactions, such as predicting miRNA targets (KURUBANJERDJIT et al., 2013).

This work aims to validate the potential application of Machine Learning
to understand the role of miRNAs in plants under biotic stress conditions by a

literature review. It will also be structured as a guideline to help researchers
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applying Machine Learning tools to their plant biotic stress experiments. It should
fill the gap of required knowledge between the fields of computer science and

biotechnology.



2 Plant immune system and miRNA

Plants, being sessile, cannot avoid or flee from adverse environmental
challenges and contact with other living organisms. To withstand the biotic and
abiotic stress they face during the entire lifecycle, plants have developed

sophisticated defense mechanisms to notice such attacks and initiate adaptative

responses (GIMENEZ; SALINAS; MANZANO-AGUGLIAROQO, 2018).

2.1 Plants and biotic stress

From seed emergence to mature lifecycle, plants deal with the damage
caused by parasites and pathogens, such as viruses, fungi, bacteria, nematodes, or
insects. This damage is known as biotic stress and, despite the defense mechanisms
evolved for centuries by plants, it is still one of the reasons for significant economic
losses from crop fields every year (JEYARAJ et al., 2020).

Plant pathogens can be classified by their different strategies to attack
plants: necrotrophs, which kill the plant tissue before feed on its content (e.g.,
rotting bacteria); biotrophs, which maintain the plant cells alive during infection
(e.g., viruses, nematodes, fungi); hemibiotrophs, which parasitize the living tissue
for some time and follow with a necrotrophic phase (e.g., oomycetes) (SERGEANT;

RENAUT, 2010).

2.2 Plant immune system

Unlike mammals, plants do not own mobile defender cells and do not
possess an 'antibody" circulatory system. Instead, they depend on each cell
performing immune functions and on signals emanating from the infected areas

(DMITRIEV, 2003). The first defense line is passive and consists of physical
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barriers such as thick cuticles, waxes, and cell walls. Plants also produce
constitutive chemical compounds to protect themselves from microbes and
herbivores. They are toxic secondary metabolites and proteins that inhibit the
functions of pathogens. The passive defense layer is not pathogen-specific and, its
amplitude depends on the species and the environmental conditions (SERGEANT;
RENAUT, 2010).

The plant immune system consists of two branches (Fig. 1): PAMP-
triggered immunity (PTT) and effector-triggered immunity (ETT). The first is based
on identifying pathogen-associated molecular patterns (PAMPs) such as flagellin
from bacteria, chitin and ergosterol from all fungi, and transglutaminase from
Oomycetes. The detection of molecular structures unique to microorganisms by
Pattern Recognition Receptors (PRRs) transmits information across the plasma

membrane, beginning a host-signaling sequence that triggers pathogen non-specific

immune responses (NURNBERGER; KEMMERLING, 2018).

Fig. 1: The plant immune system.
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(a) PAMPs triggers immune defenses (PTT). (b) Virulent pathogens release effectors that facilitate
infections (effector-triggered susceptibility, ETS). Some suppress PTI. (¢) Resistance protein
recognizes these effectors and trigger ETI.

Font: (NURNBERGER; KEMMERLING, 2018).
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However, successful pathogens deploy effectors that contribute to their
virulence resulting in effector-triggered susceptibility (ETS). Some pathogens have
evolved effector proteins capable of suppressing the PTI signaling. As an
evolutionary response, the second plant immunity system branch, ETI, recognizes
specific effectors released by pathogens either indirectly or by directly "nucleotide-
binding sites plus leucine-rich repeat" proteins (NBS-LRR) recognition (JONES;
DANGIL, 2006).

ETT is a result of gene-for-gene resistance. A pathogen factor that enhances
pathogenicity on a specific host plant is counteracted by a plant factor. These
interactions are driven by pathogen avr (avirulence) gene loci and alleles of the
corresponding plant disease resistance (R) locus. R products recognize avr-
dependent signals and trigger the chain of signal-transduction events that
culminates in the activation of defense mechanisms and an arrest of pathogen
growth. The largest class of R genes encodes a cytoplasmic receptor-like protein,
NBS-LRR. When the receptors interact with specific elicitors produced by the avr
genes, some form complexes responsible for activating defense pathways, often
associated with other kinases (DANGL; JONES, 2001).

After pathogen recognition, plants start their defense strategy: confine and
attack the pathogen with phytoalexins (antimicrobials). Some changes occur in ion
fluxes and, the concentration of salicylic acid (SA) increases, which is a signal to
establish a non-specific resistance: systematic acquired resistance (SAR). SAR
enhances the resistance against a broad spectrum of pathogens during several
weeks. Furthermore, the cell produces Reactive oxygen species (ROS) and nitric
oxide (NO), which are responsible for initializing a hypersensitive response (HR).
An HR leads to apoptosis of cells surrounding the infection, thus preventing its
spreading. It also triggers the strengthening of the cells walls and the production of

Pathogenesis-related proteins, besides enzymes involved in synthesizing
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phytoalexins. Mitogen-Activated Protein Kinases (MAPKSs) are activated to control

de protein activity level in the vicinity of the invasion site (DMITRIEV, 2003).

2.3 miRNA

Small non-coding RNAs (sRNA) also play an essential role in mediating
genes that encode resistant proteins. In addition to being involved in development,
growth, cell proliferation, and other variety of biological processes, they target
transcriptions factors of defense genes such as MAPKs and NBS-LRRs genes

(KULSHRESTHA et al., 2020).

Fig. 2: Micro-RNA biogenesis
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In plants, two main classes of SRNA can be distinguished: micro-RNA
(miRNA) and small-interfering RNA (siRNA). In brief, they differ from each other
in their biogenesis and functions (ALI et al., 2020).

The miRNAs are small non-coding endogenous RNAs of 20-22 nucleotides
(nt) encoded by microRNA genes (MIR genes) (Fig. 2). The MIR genes are found
in intergenic areas or within introns of other genes. RNA polymerase II transcribes
a long single-stranded primary miRNA (pri-miRNA) from nuclear MIR genes. The
pri-miRNA folds into a stem-loop structure stabilized by RNA-binding protein
DAWDLE (DDL), forming a precursor miRNA (pre-miRNA). Subsequently, an
endoribonuclease named DICER-like (DCL1) and other proteins such as
HYPONASTIC LEAVES 1 (HYL1) and SERRATE (SE) process the pre-miRNA
structure and create a miRNA:miRNA* duplex. To protect the recently generated
duplex from degradation, a methyltransferase protein, HUA ENHANCER 1
(HEN1), methylate the structure at the 3' terminus and export it into the
cytoplasm assisted by HASTY (HST1), an exportin protein (KHRAIWESH; ZHU;
ZHU, 2012).

In the cytoplasm, one strand of the duplex (the mature miRNA) is
stabilized by an ARGONAUTE 1 (AGO1) protein, while the other strand is
degraded by exosomes. The stabilized complex AGO1-miRNA is loaded to an RNA-
induced gene silencing complex (RISC) and guides the binding to cognate targets
by sequence complementarity. The complex pair with the mRNA target and induces
its cleavage or repress its translation. In addition to post-transcriptional control,
miRNAs regulate gene expression by causing epigenetic changes such as mRNA
poly-(A) tail cleavage and DNA and histone methylation (KHRAIWESH; ZHU;

ZHU, 2012).



2.4 miRNA and biotic stress

According to Tang J., Chu C. (2017), 65.9% of miRNA targets are
transcription factors (TFs), and 6.6% targets NBS-LRR protein encoded genes
indicating the role of miRNAs in diverse gene regulatory networks and plant
immune systems.

Several examples of interactions between miRNA and plants over biotic
stress have been described in the last decades. For instance, Navarro et al. (2006)
showed that Arabidopsis thaliana exposed to a flagellin-derived peptide (flg22)
induced a miR393 that down-regulates auxin signaling by targeting auxin receptor
transcripts increasing bacterial resistance. LI et al. (2014) investigated the rice
(Oryza sativa) immunity against the blast fungus Magnaporthe oryzae and showed
that transgenic plants overexpressing miRNA160a and miRNA398b exhibited
enhanced resistance to M. oryzae up-regulating the expression of defense-related
genes. Moreover, Liang et al. (2019) has successfully applied artificial miRNA
technology to control cucumber green mottle mosaic virus (CGMMV).

Given the importance of identifying the miRNAs targets for the analysis of
miRNAs role in the complex network that regulates stress response, biological
approaches alone are not sufficient to solve this problem. Experimental validation
of every potential miRNA target is time-consuming and expensive. For a given
miRNA, a large number of potential targets may be present. Therefore, there is a
need for a strategy able to reduce the number of possible miRNA targets in advance,
thus becoming feasible to apply experimental approaches to validate and
characterize their functions and effects (GIANSANTT et al., 2019; RIOLO et al.,
2020).

In addition to identifying target miRNAs, further investigation into the
responses of different plant stress levels and the co-interaction between miRNAs is

also a topic of interest. Plants produce miRNAs at distinct levels throughout their
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life cycle, and due to the large number of miRNAs that can be involved in a single
signaling response, distinguishing how their concentrations alter and their specific

contributions when exposed to pathogen attacks is not an easy task.

2.5 Computational approaches

The bioinformatics community has developed several tools for
computational analysis underlying the development of miRNA target prediction
algorithms. These tools are based on different biological properties of mRNA
sequence and miRNA-mRNA interactions. Although they can significantly reduce
the number of putative miRNAs, they often result in inconsistent predictions
compared to each other, leading to a high level of false positives targets after being
validated experimentally. Statistical inference based on Machine Learning has
emerged as an integrated approach to limit the number of false positives and
strengthen the value of the predictions (RIOLO et al., 2020).

Machine learning can also be used to investigate further plant stress by
having the plant miRNA expressions. Rather than linear methods, which generally
cannot describe data with multiple inputs and synergies, ML algorithms learn the
complex non-linear patterns from training data and predict the stress condition of
unknown plant samples in addition to miRNA interactions (ASEFPOUR

VAKILIAN, 2020).



3 Biological Data

Recent technological advances in genomics, high-throughput sequencing,
imaging, and other omics techniques have led scientists to a new biology era. Now,
the scientific community has access to large biological datasets available for
sophisticated analysis of complex biologic interactions. This rapid increase in
biological data dimension is challenging conventional analysis strategies. With the
advances in computational resources and computer science over the past few
decades, bioinformatics is evolving as an integrative field between computer science
and biology (ANGERMUELLER et al., 2016; AUSLANDER; GUSSOW; KOONIN,
2021; CHICCO, 2017; MA; ZHANG; WANG, 2014a).

The large amount of data introduced by the new technologies has made
biologists rethink data analysis strategies and develop new tools to analyze the
data. These datasets present the raw material to gain insights into biological
systems and complex diseases, but higher-level analyses are needed to explore their
potential (CAMACHO et al., 2018; MA; ZHANG; WANG, 2014a).

Machine learning has emerged as an attractive tool in biological research,
particularly in the computational biology community. Being able to handle large
datasets and extract information from their complexity interaction through
accurate statistical models, ML provides next-level analyses allowing new
perspectives and novel hypotheses about living systems (CAMACHO et al., 2018;
CHICCO, 2017).

3.1 Machine Learning

Machine Learning is a multidisciplinary branch of artificial intelligence that
incorporates computer science, statistics, and information theory to simulate human

learning by exploring patterns in the data without the need to define them in
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advance. ML algorithms can find functional relationships from data that underlying
characteristics are unknown or undefined. As commonly described, machine
learning is a field of study that gives computers the ability to learn without being
explicitly programmed, which means that algorithms keep self-improving to
enhance the performance of learning tasks (MA; ZHANG; WANG, 2014b).

Most ML applications involve four steps: data cleaning and pre-processing,
feature extraction, model fitting, and evaluation (Fig. 3). Given one sample of data,
it is customary to denote all features and covariates as input x and label it with its
response variable or output value y. ML algorithms can be roughly divided into

supervised or unsupervised learning (ANGERMUELLER et al., 2016).

Fig. 3: Machine Learning applications common workflow
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Font: (ANGERMUELLER et al., 2016).

3.1.1 Supervised learning

Supervised learning (SL) algorithms are trained with labeled data, which
means that for a given x, the respective known value y is provided to the model as
well. After training, the model should be optimized to predict an unknown output
for a provided input. SL problems can also be divided based on their output type
values into classification (categorical) or regression (continuous). Examples of SL
are Support Vector Machines (SVM), Regression, Random Forest, and
Convolutional Neural Networks (CNN) (AUSLANDER; GUSSOW; KOONIN,

2021).
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Linear regression is the most widespread machine learning method. The

model is based on predicting a value from a linear combination of its given features

(Fig. 4):
Y w,x =wy+wyzy + o+ w,x, 1.2
In the equation above, y is the predicted value, z,,z,,...,z, are the
observed values from data, the vector w = (wy,...,w,) is composed of the

optimized coefficients, and w,, is the interception point. In one dimension, the model

resumes to a line equation: y = ax + b. The machine goal is to assign the w vector

values so that deviations of the real observations from the predict line are

minimized (PEDREGOSA et al., 2011).

Fig. 4: Linear regression
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Font: (FUMO, 2017).

Logistic regression is a supervised classification algorithm that models the

probability of an observation belongs to one of two classes and classifies it by

establishing a threshold (decision value).
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Considering that the output y = 1 represents one of the classes, the model
estimates that for a given value of z, the observation is related to this class (y=1).
The purpose of the machine is to estimate the unknown parameters:
Bos Bys Bay -, By to classify the data better (LEMESHOW; HOSMER, 1982).

Linear methods can be modified to address more complex problems.
However, they usually have the disadvantage of overfitting (Section 3.1.3) requiring

regularization, which is a process to keep complex models simple and avoid

overfitting) (LEMESHOW; HOSMER, 1982).

Decision Trees

The decision tree model is a non-parametric supervised learning method
used for classification and regression represented by a tree-like structure, where
each node has a binary decision criterion based on one or more parameters. The
node tests the data and split it into two branches, where each branch represents
one of the possible outcomes. The process happens until the stream reaches a leaf
node in which the observation is finally classified (ARABNIA; TRAN, 2011).

Depending on which algorithm is applied, decision tree models may vary.
For instance, the ID3 algorithm starts with the whole training data and chooses
the best feature to use as a criterion to the root node (first node). Then, it splits
the set into subsets. If all instances in the subset have the same classification, the
process stops for that branch, and a leaf node is returned with that classification.
Otherwise, if the subset contains multiple classifications and there are no more
features to test, the algorithm will return the most frequent classification. If there
are more features to test, the algorithm will recursively call itself again (ARABNIA;

TRAN, 2011).
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Random Forest (RF) (Fig. 5) model is an example of combining and
training multiple decision trees to improve predictive performance and can

efficiently be applied to complex and non-linear datatypes (ZHANG; MA, 2012).

Fig. 5: Decision Tree Example
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Font: (PEDREGOSA et al., 2011).

Support Vector Machines (SVM)

Support Vector Machine (SVM) is a supervised learning method initially
used for classification, but it can also be modified to solve regression and outliers
detection problems (Fig. 6). The algorithm creates a hyperplane in the feature space
to linearly separate the observations of different classes. (PEDREGOSA et al.,
2011).

Model training consists of optimizing the hyperplane so that the distance
between its margins is maximized. The sample points that lay over the margins are

the so-called Support vectors. To achieve its goal in non-linear data, the model also
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employs kernel functions to implicitly transform the space, enabling the separation

in the original feature space. (SCHAFER; CIAUDO, 2020).

Fig. 6: Optimal Hyperplane and Support vectors
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SVM is an effective tool in high dimensional spaces, large datasets, and
cases where the number of dimensions is greater than the number of samples,

achieving high accuracy predictions (SCHAFER; CIAUDO, 2020).

3.1.2 Unsupervised Learning

Unsupervised learning (UL) algorithms are used when the labels on the
input data are unknown. These methods can identify hidden patterns in unlabeled
data by themselves, without the need for output labels. Methods such as
hierarchical clustering and principal components analysis (PCA) are used to cluster
subsets of data or reduce its dimensions directly. Unsupervised techniques can be
advantageous as a first step before training a supervised learning model, for

example, reducing the number of relevant features.
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Principal components analysis (PCA)

Principal components analysis (PCA) is an unsupervised learning feature
extraction procedure, which extracts a small set of directions (principal
components; PCs) to represent the data and reduce its dimension (Fig. 7). It reveals
underlying structures in data and derives a low-dimensional set of features from a
large set of variables. PCA assumes that a small number of principal components
can significantly explain the variance of a complete dataset.

PCA arises from quantifying the importance of each dimension for
describing the variability of a data set. The algorithm results in a sorted array of
new features such that the first principal component is the direction of the data
which the observations vary the most. The output of PCA is often employed as an
input of a supervised model in place of the entire set of input features. Additionally,

PCA is commonly used to visualize complex datasets with multiple parameters

(SHLENS, 2014).

Fig. 7 Principal Component Analysis (PCA)
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3.1.3 Deep Learning

Deep learning (DL) is a subfield of Machine Learning. Different from ML
classic algorithms, deep neural networks (DNN) can circumvent the manual
extraction of features by learning them directly from data, which means that no
pre-defining features need to be set based on prior knowledge. Moreover, DNN can
capture non-linear dependencies at multiple genomic scales (ANGERMUELLER et
al., 2016).

Artificial Neural Networks (ANN) consists of layers of interconnected
compute units (neurons) (Fig. 8). The network receives data in an input layer,
which are transformed in a non-linear way through multiple hidden layers, and
finally computes an output in the output layer. Each neuron is connected to all
neurons from the previous layer.

Each neuron receives multiple inputs, computes a weighted sum, and
applies a non-linear function to calculate its output. The weights are the free
parameters to be optimized to capture the models’ representation. Learning
minimizes a loss function, which is the difference between the output layer and the
true label. This loss is backward propagated through the network to compute the
gradients of the loss function to weights and update their value to move along the
direction of steepest descent dw multiplied by a learning rate (ANGERMUELLER
et al., 2016).

Alternative structures include convolutional neural networks (CNN),
recurrent neural networks (RNN), and autoencoders (ANGERMUELLER et al.,

2016).
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Fig. 8: Artificial Neural Networks
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3.1.4 Data preparation

Training data is the key component to the success of every machine
learning application. The model performance is directly related to the data quality,
thus, efforts on collecting, labeling, cleaning, and normalizing data are worth it and
can significantly improve the prediction accuracy (ANGERMUELLER et al., 2016;
CHICCO, 2017).

The first critical point is the size of the dataset. Sufficient training data
must be available to fit complex models. The ideal situation is to have at least ten
times more data instances than data features (CHICCO, 2017).

The second critical point is the pre-processing of the dataset. Arranging
the dataset as a good input implies randomly shuffling data instances to avoid any
possible trend that can be incorrectly learned by the model, besides discarding all
inconsistent, corrupted, and inaccurate data. Biological data is often collected from
multiple experiments, which happen under different conditions. These conditions

need to be taken into account when applying data from different sources to train
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the algorithm. Normalization of numerical datasets can also help to accelerate the
training and to put the whole dataset in a common frame (CHICCO, 2017).

Another frequent problem in computational biology is the imbalanced
datasets. In an imbalanced dataset, one class is over-represented in relation to the
other. As consequence, the machine may learn better how to recognize the over-
represented classes, but it may have difficulty in classifying the data as the less-
represented classes. To undergo this problem, the solution can be simply collecting
more data, or removing data elements from the over-represented class. Other
techniques to tackle the imbalanced data problem can be explored depending on
the uniqueness of the data (CHICCO, 2017).

To assure that the model will be able to predict unseen data, ML models
need to be trained, selected, and tested on independent data sets. A common
practice is to split the data into 3 parts: 60% for training, which is used to learn
different hyper-parameters!, 10% for validation, which is used to assess these
parameters, and 30% for a test, which is used to evaluate the model with the best
performance on unseen data. Employing independent data sets helps to check for
overfitting. Overfitting happens when the model learns intrinsic characteristics
exclusively from the training data and loses its capacity of predicting new
occurrences (Fig. 9). Comparing the model performance over the training set with
the validation set can indicate overfitting, as shown in Fig 8 (ANGERMUELLER

et al., 2016).

! Hyper-parameters of a machine learning algorithm are higher-level properties of the

algorithm statistical model, which can strongly influence its complexity, its speed in learning, and

its application results (ANGERMUELLER et al., 2016).
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Fig. 9: (i) Training, Validation and Test model. (ii) Overfitting performance
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3.1.5 Evaluation the model

After training the model with the training dataset, evaluating its
performance on a validation dataset is an essential step. For this task, there are
several statistical scores to measure the model performance. For regression models,
the root-mean-square error (RMSE) and the coefficient of determination (R?) are
standard scoring metrics (SCHAFER; CIAUDO, 2020). For supervised binary
classification problems, Matthews correlation coefficient (MCC) can score how well
the classifier is doing on both the negative and positive elements with a value

between -1 (worst value) and +1 (best value) (CHICCO, 2017).

TP . TN — FP .FN
MCC = 1.5

vV TP+FP . TP+FN . TN+ FP . TN +FN

TP: True positive; TN: True negative; FP: False positive; FN: False

negative

3.2 ML-based miRNA target prediction

Advances in next-generation sequence (NGS) technology have enabled

improved methods to identify miRNAs. Elucidating how miRNAs regulate plants
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responses is highly dependent on the recognition of their target molecules
(SRIVASTAVA et al., 2014).

The development of miRNA target prediction algorithms can be based on
characteristics of mRNA and miRNA-mRNA interactions or Machine Learning
statistical inference (RIOLO et al., 2020).

Machine learning algorithms can be applied to model miRNA interactions
and predict miRNA targets. To identify relevant interactions, ML techniques have
been employed to build models based on experimental observations. It’s important
to note that these data may contain errors but, it’s the ground truth of the Machine
Learning model (SCHAFER; CIAUDO, 2020).

ML techniques are trained using experimental data previously validated to
match miRNA-mRNA interactions by distinguishing positive and negative
examples from data. These predictions are based on biological features such as Seed
Type, Binding Free Energy, Supplementary Binding, Target Site Conservation,
Target Site Accessibility, Target Site Position, and Target Site Abundance.
Positive data instances are collected from validated experiments with proven
biological significance, while negative examples are usually generated artificially to
fill the database (SCHAFER; CIAUDO, 2020).

Examples of predictions tools based on Machine Learning are TargetScan
(Linear regression), miSTAR (Logistic regression and random forest), MiRTarget
(SVM), deepTarget (Recurrent Neural Network with Autoencoder) (SCHAFER;
CIAUDO, 2020).

Trained machines reported in literature usually combine different features
to make predictions, resulting in methodologies with distinct limitations.

The best approach to obtain good results on predicting targets is applying
a combination of tools that are derived from different predictions assumptions, thus

ensuring a good balance of sensitivity and specificity (RIOLO et al., 2020).
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Validating the selected putative miRNA from computational approaches
includes four requirements: miRNA and mRNA need to be co-expressed in the same
organism, they also need to specifically interact with each other, miRNA must
affect protein expression, and biological function (RIOLO et al., 2020).

Although plant miRNA tools available are optimized to predict targets in
Arabidopsis with high specificity, they may not perform well in non-Arabidopsis
species, suggesting that non-conventional features of miRNA-mRNA interaction
may exist and should be incorporated in next-generation of algorithms to improve

target identification interactions (SRIVASTAVA et al., 2014).

3.3 Predicting plant stress and miRNA interactions

After discovering and isolating miRNA genes, machine learning can also be
applied to investigate how miRNAs are expressed in stress conditions and their
contribution to plant response toward different levels of plant stress. Asefpour
(2020) demonstrated in his study the performance of machine learning as a
promising tool to discover aspects of miRNAs’ contribution to plant stress
responses. He used machine learning to predict plant stress by having the plant
miRNA expressions and investigated the contribution of each miRNA to the plant
response by using feature selection algorithms. The study was conducted with
plants under abiotic stress, but the results suggested that the same approach can
be extended to biotic stress.

The main issue to understand miRNA functionality is the fact that
miRNAs not only regulate immune response but also growth, reproduction, and
other cellular activities. Moreover, they can interact with each other to enhance
plant response. Distinguishing if the expression of one miRNA has significantly
changed and the connection of these alterations with other miRNAs can be solved

by Machine Learning algorithms.
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Asefpour (2020) created a database with the concentrations of miRNAs
when Arabidopsis thaliana was exposed to salinity, drought, cold, and heat. The
selected miRNAs have been previous discovered to be involved in Arabidopsis
thaliana stress response. A feature selection algorithm was used to determine which
miRNAs had the most relevant alterations on their expression for each kind of
stress. With this reduced number of features, supervised learning algorithms, such
as Decision tree and Support Vector Machine, were trained to predict which stress
response level corresponded to each combination of miRNAs concentration. SVM
was able to predict the output with R? = 0.96 when measured the concentrations
of miRNA-169, miRNA-393, and miRNA-396.

Asefpour (2020) was the first to use machine learning to predict stress using
miRNAs expression and consequently identifying the most relevant miRNAs
involved in each kind of stress response. ML is a potential alternative to
understanding the contribution of each miRNA, which is time-consuming with
experimental approaches, and thus, contributes to select key molecules to be a
target of plant breeding genetics.

The results described above and with the knowledge about how biotic stress
response work, it’s highly suggested to new researchers to apply machine learning

in biotic stress response experiments.



4 Conclusion

As described in this paper, Machine Learning techniques come as a
powerful tool to improve our knowledge about plants and their interactions with
the environment. They can significantly reduce the number of experimental assays
in predicting miRNA by mitigating false positives and highlight the functional
interaction between plant-produced miRNAs under stressful conditions by
measuring their concentration levels. Both information about miRNA targets and
their functional characterization are essential for the development of resistant
transgenic plants.

Although ML techniques have not been intensively used to identify the role
of miRNAs in biotic stress specifically, this review has shown the potential use in
this area. Since most of the plant immune system relies on signaling paths that
depend on transcriptional factors and NB-LRR protein, which miRNAs mediate
their activation, finding the miRNAs targets and assessing miRNAs concentrations
can reveal a lot about plant-pathogen interactions.

Choosing Machine Learning algorithms to study miRNA can deal with the
way their data is available and their complexity. Prediction is based not only on
genomic sequence complementation but on other biological features as free energy
and conservation. Furthermore, miRNA characterization involves multiple
correlations which the underlying patterns are unknown yet.

Machine Learning algorithms available up to now can explain complex data
patterns, but they are highly dependent on data quality. ML models will naturally
achieve better results as more experimental data become available and spread
throughout the scientific community. More data about economically relevant plants
need to be collected in order to refine their datasets and enable a more accurate

performance when applying ML algorithms.
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